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Absmct. A theory is proposed for the nonlinear excited states in the hydrogen bonded 
chain of peptide groups, where the interaction between intramolecular and intermolecular 
vibrations i s  taken into account. It is an interpolation between the behaviour in two limiting 
cases, i.e. the vibron soliton in the subsonic region, and the acowtic soliton in the supersonic 
region. Using this framework, the mechanism of energy migration in hydrogen bonded 
systems of peptide groups is analysed. 

1. Introduction 

In recent years interest has been aroused by attempts to apply solid state theory to the 
problem of describing biological processes at the molecular level [ 1,2]. This approach 
is based on experimental data on the periodic structure of the protein molecule [3]. 
The methods of solid state physics are often applied to investigating one of the central 
issues of bioenergetics-the explanation of the reasons for the high efficiency of the 
transfer of energy. Theoretical studies of the phenomena of energy transfer in complex 
biological systems in an aqueous environment inevitably involve considerable sim- 
plification and modelling of the main properties of these phenomena. 

The relative flexibility of large protein molecules is reflected in the large number 
of possible conformations which are transformed into one another on changing the 
external conditions. One of the most important and interesting secondary structures 
is the alpha-helical structure which is formed as a result of intramolecular hydrogen 
bonds between the peptide groups of the protein molecule [3]. The potential of the 
hydrogen-bonding interaction between peptide groups has a remarkable, nonlinear 
character, which is often described by the Toda-potential [4]. The energy of formation 
of one hydrogen bond between peptide groups is of the order of 0.21 eV. This hydrogen 
bond therefore belongs to the weak type. The amide I vibration in peptide groups has 
an energy equal to 0.21 eV and a large electrical dipole moment. 

When the adenosine triphosphate (ATP) molecule is hydrolysed, an energy of about 
0.49 eV is released which is insufficient to excite the electronic states of the molecule. 
It is only possible to excite the intramolecular amide I vibration in the peptide group 
of a protein molecule. The vibrational dipole moment (0.3 D) is also sufficiently large 
to provide a strong resonance interaction leading to collective vibrational excitons, If 
the energy released by the hydrolysis of the ATP molecule is used for the formation of 
an initial impulsive lattice distortion in the chain of peptide groups, the impulse may 
break up into a single soliton plus some additional background effect. In this situation 
the created soliton induces the excitation of intramolecular amide I vibration through 
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the classical coupling between intramolecular and intermolecular vibrational oscillators 
[5-71. 

Recently Yomosa [41 regarded the one-dimensional hydrogen-bonded chain of 
peptide groups in the alpha-helical protein molecule, as a Toda nonlinear lattice [S, 91. 
It was shown that the local increase in density-the so-called acoustic solitons-can 
propagate in alpha-helical proteins if higher-order spatial derivatives of the displace- 
ments of molecules (dispersion) are taken into account. Their velocity exceeds that of 
iongituainai sound veiocity c2 in aii cases. As ihe excitation velocity decreases to c,, 
the excitation energy and momentum approach zero. This implies that the longitudinal 
sound velocity c, is in some way special. Such difficulty should be removed by inclusion 
of the coupling between the vibrational exciton of the intramolecular amide I mode 
and the intermolecular lattice phonon. 

Davydov [5] proposed a quantum theory for alpha-helical protein to construct a 
molecular theory of muscle contraction. Attempts were later made by Scott and 
coworkers [6] to generalize the Davydov theory in several directions by performing 
extensive numerical calculations. The presented soliton is a collective excitation formed 
as a result of combining amide I excitation with local deformation of the chain. Takeno 
[7] also considered that the naive model exciton Hamiltonian employed in the Davydov 
theory does not appear to be equally applicable to vibrational excitons, since the nature 
of vibrational excitation transfer is not necessari!~ ana!ogous !o !ha! of e!ectmnic 
exciton transfer by exchange interactions. He showed that the classical theory appears 
to be more appropriate to describe the vibrational energy transfer. In the theories of 
Davydov and Takeno [5-71, solitary excitation propagates only with velocities which 
are smaller than the longitudinal sound velocity c2 appropriate to the chain under 
study. As the excitation velocity approaches c2,  the excitation energy and momentum 
grow infinitely. Thus difficulty also should be removed by the inclusion of anharmonicity 
into the interaction between molecules. 

It would thus be interesting to reinvestigate how the nonlinearity of the hydrogen- 
bonds generates both a self-trapping mechanism for amide I excitations and an acoustic 
soliton formation for lattice vibrations. As a model, we now consider a one-dimensional 
chain with an exponential interaction potential, formed by the same molecules which 
are spaced from each other by a distance I as shown in figure 1. These molecules 
possess rather iarge dipoie moments directed aiong the chain of peptide groups. The 
vibrational energy of carbon monoxide ( C O ) ,  incorporated into the peptide groups of 
the chain, is transferred along the hydrogen-bonded chain. The local contraction of 
the chain, formed by nonlinear lattice distortion, may serve as a potential well for 
amide I excitations. 

Figure 1. Schematic representation ofthe system. OCNH denotes a peptide group and the 
dashed line segments indicate a hydrogen bond. 

From these observations we try to calculate the energy and momentum of the 

brief review (to make the paper self-contained) of basic equations of a model protein 
system (section 2), we calculate the energy and momentum of the excitation based on 
the continuum approximation (section 3). The final section provides conclusions and 
proposals for further work. 

po!i!q exdtztion moving With ve!oci!y v After presen!ing our mode! and_ givine a 
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2. Model system and basic equations 

We describe without of generality the one-dimensional hydrogen-bonded chain of 
peptide groups, ... OCNH..,OCNH..., as a Toda lattice [4,8,9]. Then the Hamiltonian 
of the lattice system is given by 

(2.1) 

where u., M, x and b are the displacement of the nth molecule from its equilibrium 
position n, the molecular mass, a coefficient of longitudinal elasticity of the harmonic 
lattice and the parameter of anharmonicity, respectively. The value of the parameters 
x and b can be estimated from the results of the ab  initio SCF MO calculation for a 
hydrogen-bond in a model dimer system. 

The dipole moment of the intramolecular amide I vibration is large enough to 
provide a strong resonance iteraction leading to collective vibrational excitons. The 
Hamiltonian for the intramolecular amide I vibration is given by 

(2.2) 

H L = ~  [4Mu~+xb-1{-(u.-1 -Un)+ b-'[exp(b(u._, -Un))- 1111 

HA=+ 1 (/d + p & ' d - - f L  1 (qnqn+t +qnqn- i )  

which is derived from the Takeno model [7]. q,,, p and E are normal coordinate, 
effective mass, and frequency, respectively, of the relevant intramolecular amide I 
vibration of the nth molecule, and L is a force constant giving vibrational exciton 
transfer between the nearest-neighbour peptide molecules. We note that only the ground 
state and one of the excited states of the peptide group are considered. 

As shown in previous theories [5-71, there always exist some couplings between 
the intramolecular amide I vibration and the lattice vibration of peptide groups. The 
energy ( E )  of the relevant amide I vibration and the resonance interaction ( L )  of 
neighbouring peptide groups depend on the instantaneous position x. = n l +  U. of the 
molecules. Two types of interaction constants xI, and x2 are obtained by expanding 
E ( & )  and L(x,  - x n )  to first order with respect to the U. Then the Hamiltonian of such 
types of interaction is described by the following function 

1 (2.5) ,, ~I rpx l  ,.. x2 ,,.. 
1. nr =z L 

The excited states of a soft molecular chain, which contains vibrational excitons, can 
be characterized by the Hamiltonian 

(2.4) 

From the above model Hamiltonian it is straightforward to derive the following 

(Un+,- i i- ,)qt--  jtus+,- iinjqn+, + (U. - ti-,)qn-,jqn I 

H = H,+ HA+ H , .  

self-consistent equations for w. and q., 

(2.5) 

where Iw. = u . - ~  - u.. We substitute into these equations the expression 

q. ( t )  = &( t )  exp[im*nlV - iwr] +CC (2.7) 
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where m* is the effective mass of the vibrational amide I exciton and w is the energy 
of the bound state of the vibrational exciton in the field of the locai deformation 
moving with velocity V along the chain. Then we obtain the set of equations for the 
envelope +.(I) of the function (2.7) 

(2.8) 
d’w. xb-’ 
dt M 2 an l ~ - -  (2 sinh! ”)’ ( [ + n ~ , ~ 2 - ~ + n + l ~ z )  = O  

(2.10) 
l( 1 2 L 

P 
( - w ~ + E ’ ) + ~ - - - - ( ~ ~ + , + + ~ - ~ )  cos(m*lv)+- xI-- ( U ~ + ~ - U ~ - , ) + ~ = O  

where m* = p / L 1 2 .  
When the displacement fields {&, w,,} change slowly with n we can employ the 

so-called continuum approximation under the assumption that the velocity of excitation 
V satisfies the inequality 

m*lVcc 1. (2.11) 

Keeping fourth-order derivatives with respect to the coordinate x, we can transform 
(2.8) !O !!IC form 

where A’=2(,y-,y2/p). In the absence of coupling (A’=O) ,  (2.12) is called the 
Boussinesq equation. The solution of such an equation was studied by Toda and 
Wadati [ 9 ] .  Then (2.9) and (2.10) are transformed to equations involving partial 
derivatives which are denoted below by indexes of the corresponding variables 

4e = - wJX (2.13) 

(2.14) 
U’ -- +xx +A’u,+ = [o’-oo( V)’] 
P 

where 

L 
with &,=E’ - - .  

2P P 

L 
WO( v)’ = o i + - ( m * ) 2 V 2  

To study stationary solutions belonging to the class of rapidly decreasing functions, 
we introduce the following dimensionless variable 

x-  v t  (=- 
I 

and assume that +(x, t )  = 4( f ) ,  w(x,  t )  = w ( f ) .  Then equation (2.13) becomes an 
identity, and (2.12) and (2.14) are transformed as follows 

(2.15) 
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It is convenient to replace the set of equations (2.15)-and (2.16) by an integral 
equation. Let us multiply (2.15) by dw/dc and (2.16) by d+/dc, Integrating them and 
taking account of the boundary conditions (the functions + and w and their derivatives 
vanish at I f 1  + 00) and using the replacement f -  + ( f )  in the integrands, we obtain the 
following equations 

(2.17) 

(2.18) 

In the case of bell-like solitons with centres at [ = O  the equality 

(2.19) 

holds. Using this equality, we find the magnitude of the spectral parameter from (2.18) 

Substituting this value into equation (2.18), we find the measure 

(2.20) 

(2.21) 

The desired amplitude io is determined from the normalization condition for the 
function +(e). On replacing g by +(e)  this condition becomes 

J o  

where C is a constant. Substituting (2.21) into this equation, we obtain 
-112 A‘ 112 (“’ T ~ [  (z)’ I,”” w(y)y dy -(‘ w ( y ) y  dy] dT= (2) C (2.22) 

0 CO 0 

which allows us  to evaluate the maximum value +o of the envelope +(e). Finally, 
integrating (2.17), we obtain the required integral equation 

(2.23) 

We note that this integral equation is exactly equivalent to the set of differential 
equations (2.17) and (2.18). If the norm of the corresponding integral operator is 
less than unity, the solution of (2.23) can be sought by the method of successive 
approximations. 

3. Solitary excitations 

As mentioned in the previous section, the solution of the integral equation (2.13) can 
be obtained using the method of successive approximations. Integrating (2.21), we 
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find the envelope &(g) = &-[) in the implicit form 

As the zeroth approximation we choose the function 

where a is a positive number which is to be determined. Equation (z.zZ), taking tinto 
account (3.2), defines the amplitude & of the function 

Substituting (3.2) and (3.3) into (2.21) and the right-hand side of (2.23), we obtain for 
the first-order approximation 

(3.4) 

Unfortunately, the evaluation of this integral leads, in general, to a complicated 
expression. If n is, however, a positive root of the following cubic equation 

+A A' - z3+(1  -s*)z  --= 0 
12L Mc2 

the integral is simplified and becomes easily evaluated. Then the first-order approxima- 
tion function takes the following form 

w ( ' ) ( &  = ag$ (3.7) 
where g =- with v = h .  Substituting (3.7) into (2.221, we find the amplitude 
of the function &[) to the first-order approximation 

Now we can write the solutions of the set of equations (2.17) and (2.18) explicitly 
to the first-order approximation. Let us substitute (3.7) and (3.8) into (3.1) and (2.20). 
Then we obtain 

(3.9) 4'"(S) = &sech(&f) n'"= - L ; 2  

and it follows from (3.7) that 

(3.10) w ( I )  (6) =-sech2(&). 2ic2 
A 

The dimensionless parameter 

(3.11) 
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depending on the velocity, characterizes the inverse width of the solitary excitations. 
Substituting the expressions (3.7) and (3.8) into (2.21) and the right-hand side of (2.23), 
we find the solution to the second-order approximation. However, it is easily proved 
that if the relation 

g = l  or i 7 = 3 v A '  (3.12) 

holds, the first-order approximation coincides with the zeroth one as shown in 
figure 2. Actually, Scott and coworkers [lo] have already demonstrated that the 
interaction constant (A') represents the anharmonicity ( 7 )  in the longitudinal hydrogen 
bonds. Therefore, if the relation (3.12) is satisfied, the solution 

&O = &sech(poS) n = - L p :  (3.13) 
I 

becomes the exact one, if is defined by the expression 

aA' 
Po=- 4L 

(3.14) 

(3.15) 

where a is a positive root of (3.6). Using (3.15). we can transform (3.6) to the following: 

A 2  
4up;+ (1 - s2)po--=0.  

4LMc: 
(3.16) 

It involves directly po, which enters into the exact solutions. 
At a fixed value of s, (3.16) has the single positive root po=pQ(s)  if s 2 < 1  and 

sz> 1. This is shown in figure 3 .  It follows from figure 3 that the sound velocity c2(s = 1) 
is not in any way special. The solutions have meaning for subsonic ( s 2 < 1 )  and for 
supersonic (sz > 1) velocities. When $(e) is known, we can determine the displacement 
field 

4 6 )  = w t i c n l  (3.17) 

t 

a 
Flpre 2. The A'-y relation. Numbers attached to each curve denote ( 1 )  the subsonic ease, 
(2) the supersonic case, ( 3 )  the general case, respectively. 
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Pa I 

I i > 
0 1 2 

5 

Figure 3. The dependence of co on the velocity. Numbers attached to each curve denote 
( I )  the subsonic case, (2) the supersonic case, (3) the general case, respectively. 

and with its help we can obtain the energy and momentum of the solitary excitation 
moving with velocity V 

E(V)=fm*V’+n+m,(V)+fMc: 

(3.18) 
i ’  

= fm* V2+oo( V)’- fpi+tMc:(,) [ 1 +s’+fp&~i 
\A I 

(3.19) 

Such a solitary excitation is stable if its energy is less than that of the bottom of the 
energy band of free amide I excitation, i.e. if E( V) < mo( V)2. 

4. Approximation for solitary solution 

In this section we examine the behaviour of solitary excitation for various limiting cases. 

4.i. Subsonic case 

If dispersion and anharmonicity are absent and the parameters Y and y approach zero 
simultaneously in such a way that the relation (3.15) remains valid, equation (3.16) 
has a positive solution only at subsonic travelling velocities 

Then the functions (3.13) and (3.14) with pa= piDp) coincides with those studied in the 
theories of Davydov and Takeno [5-71. The existence of the doubly degenerate ground 
state allows the topological soliron, which is a domain wall separating two distinct 
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ground states. Substituting (4.1) into (3.18) and (3.19) we obtain the energy and the 
momentum carried by the solitary excitation of this kind 

E @ ) (  V) = +m * v2 + WO( V)’ - i[ p p 1 2  + :Mc: [ 1 + sz + +{ pbD’)*]{ pp93 (4.2) 

(4.3) 

As shown in figures 4 and 5, if the excitation velocity approaches c 2 ,  both the excitation 
energy and the momentum grow infinitely. 

I 
I 

> 
O 1 

5 

Figure 4. The dependence of the excitation energy an the velocity. Numbers attached to 
each curve denote ( I )  the subsonic case, (2) the supersonic case, (3) the general ease, 
respectively. 

4.2. Supersonic case 

In the theory of subsonic solitary excitation, coupling between the intramolecular 
amide I vibration and the intermolecular lattice vibration is essential. But before 
considering such higher-order mechanisms for soliton formation, there exists a more 
natural and reasonable introduction of a soliton into the hydrogen bonded chain of 
peptide groups. 

If (3.16) holds as the ratio A 2 / i  approaches zero, then only the supersonic acoustic 
soliton (the continuum version of the Toda lattice soliton) is excited, which is described 
for U = &  by the function [4,9] 

Then the function (3.14) with p,,= piB) coincides with that studied in the theory of 
Toda and Wadati [9]. Unlike phonons, excitations of acoustic solitons do not, in 
practice, lose energy in collisions with the admixture atoms, because the scattering 
effect between the supersonic soliton and the intramolecular amide I vibration is 
neglected. 

p p  = J30 V = s c ,  s2> 1. (4.4) 
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* 
Figore 5. The dependence afthe momentum of excitation on the velocity. Numbers attached 
to each curve denote (1)  the subsonic case, (2) the supersonic case, (3) the general case, 
respectively. 

The energy and momentum of the acoustic soliton are given by the analytical 
expression 

E‘B’( V) = 4 x 3 ( s ’ -  1)”2(1+9s2)/30y2 (4.5) 

pcB)(v) = J S ~ ~ ( ~ ~ - ~ ) ~ / ~ ~ - ~ M Y  (4.6) 

With a decrease in the velocity V,  the soliton energy and momentum are lowed. Hence, 
in the limit V+ c, they vanish as shown in figures 4 and 5. 

4.3. General case 

We note that the sound velocity c2(s = 1) is not in any way special as shown in figure 
3. In the curve of fib“’, the above-mentioned difficulties have been removed. Arestriction 
on the velocity is determined by the condition of validity of the continuum approach 

FO‘C 1 (4.7) 

and also the requirement that the solitary excitation energy should be below the bottom 
of the energy band of an intramolecular amide I exciton. 

In the crossouer region V- c,, however, the situation is very complicated and we 
cannot draw a simple picture of the excitation. While in movement, the supersonic 
soliton may scatter the intramolecular amide I excitons, therefore, it is rapidly deceler- 
ated. The problem of the realization of the solitary excitations considered above for 
the crossover region demands a special study. 

5. Discussion 

In this paper we proposed an interpolation theory for nonlinear excited states in the 
hydrogen bonded chain of peptide groups. In this framework, the effect is separated 
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into the amide I exciton-phonon coupling effect and the effect of anharmonicity of 
the phonon. Expressions for both effects are taken so that they coincide with theoretical 
results in limiting cases. 

In most previous theories, only one of the two effects has been taken into account. 
Theories where the effect of amide I exciton-phonon interaction is considered are 
valid only when V<< c,. On the other hand, theories where only the anharmonicity of 
interaction between peptide groups is taken into account are applicable when V>> c,. 
In general cases both effects should be taken into account. In particular, the situation 
is very complicated in the crossover region V - c 2 .  Therefore, to examine theoretical 
results in this region, we should carefully study how the various types of interaction 
modify the results given in this paper. 

From these considerations we can conclude that as the travelling velocity approaches 
and then exceeds the velocity of sound, the qualitative mechanism of the soliton 
iurmaitun cnanges anu unc nas an champic UL a crussuvcr DBLW~BII a rupuiugrcar SUIILVII 

(vibron soliton) in the subsonic region and a non-topological soliton (acoustic soliton) 
in the supersonic region. 

Throughout this paper we have neglected the effect of discreteness of the lattice. 
Such an effect will be discussed in forthcoming papers. The calculations described 
here were carried out on the Nara University ACOS-430170 computer. 

c .._.. A:.~. .L .__.. ._a .-.L.. ._ I .  .P.  L .A---,--:--,--,:..... 
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